A system for the semiautomatic generation of E-R models from natural language specifications

0
100

Authors: Carl Delaune, Carlos Segami, Fernando Gomez

Tags: 1999, conceptual modeling

Techniques that allow a program to generate E-R models for small application domains are described. The inputs to the program are natural language specifications. The program consists of two major components: a natural language understander and an E-R generator. The paper describes briefly the knowledge representation structures constructed by the natural language understander, and, then, explains the E-R generator in detail. The E-R generator consists of two kinds of rules: specific rules linked to the semantics of some words in the sentences, and generic rules that identify ER-entities and ER-relationships on the basis of the logical form of the sentence and on the basis of the ER-entities and ER-relationships under construction. The program has been tested on a set of database problems. © 1999 Elsevier Science B.V. All rights reserved.

Read the full paper here: https://pdf.sciencedirectassets.com/271546/1-s2.0-S0169023X00X00419/1-s2.0-S0169023X98000329/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEMr%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIQCiU58WrjODB8Vs58uI9EOyomlf83SC%2F4ix7wPj%2BfloqwIgKdQr5JPEX49Y9C0j%2FNK09iOrBDQIDPDJS75%2F9E9%2FrEoqvQMI8%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARADGgwwNTkwMDM1NDY4NjUiDExpRlsq%2FZPKD1MsOSqRA3JErmDfQf%2FiWEeqcTvnZ%2BHzRsh5zHLbuKcKzWDecIFE8BWcrlOh2%2Bqv3jbuFpgP1dxZj34fsV7AQUpA9fUjw6qnPPUua4il3zR4w7pDgZbWyPX9nbMqqTpt6wfBFHfQCAwvu%2FnoAPGAtLreR6Xb6oPVgmxj7hGYc4kBQdOVg7RLFoiezdkaFvhUp8XNd%2FAidut55Ipp%2BFbIp1RZYZLP0PxOIk5HiOPW2yGHiOw1t2zCpSp8ZOTElff%2BrozUhDkhBG%2FAiRo2EEoJUa%2B%2BZk%2FpyQxiN8x7L%2FtM6Bj1T5m2ZC0tGW3PVCjEvrghp%2FRhuF1U5sKj5lRNs2NFLrD0zkXw6UJNcuzxIC0q%2Bzo9J4aFm64PlRvQd%2FEgjxvFPO%2Fj7he0kzprF39RKjjY4eTeLH8FxcyvN3S2pemh0uRVjgMJdhhwlpxwRXgUkTiBtAGGjkskHpKhqUPxss6b4Ige3BrF%2B6sLY42uUqes9apmbWNXG8%2Fc%2F1WIzs7tO2EFSfPp19XmGw3spVp5VZHJ5BLy2Ekb%2BSNCMMzW8vsFOusBJOBTMKalvUbyLH2tMTY5ELZ%2BDuWzoCAfg1GriscnI0QKQv8qMfTxjQw5rdSoCQju6T3UwiOPuiKtnd7cCUU01PZVPuK4G315inPkA7nmSXj279MqtcA%2BSCviTXRwZPLAJsoVZwclsP52fvYIsp0y4fatbkjQv4yGahx7GZNobsE%2Bcjz2JAgmMlnnqkOfX78JPdQBBFUzGcWq8yl6ZcTLpVua1O1XbQAzHMmXA%2BS%2BgNv7Lp2zM1htU6m5qwnmtq4%2FOKTFrYyX9rc2glFA%2FUb5R%2F9iP3TuhnUL2wF7QsOGqViDKqTdzZwf%2BClpOg%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20201006T183526Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYRN6EH73H%2F20201006%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=107fa61d9a42737866c385afc574714b20fdf5d219a9d75928bbcd8e7131ddda&hash=a964f46e093c23c7e59511e0982766bd001d9a404263db2dc6e5b21b871fc9c2&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0169023X98000329&tid=spdf-013aee20-f612-4897-a82f-f8d10886bfbe&sid=486d779f37b05542706a4e676167ccab2c3agxrqa&type=client