Leveraging the Dynamic Changes from Items to Improve Recommendation

0
71

Authors: Hai Jin, Weimin Mu, Weiping Wang, Yun Zhang, Zongze Jin

Tags: 2018, conceptual modeling

User-generated reviews contain rich information, which has been ignored by most of recommender systems. Recently, some recommender systems using reviews with deep learning techniques have demonstrated that they can potentially alleviate the sparsity problem and improve the quality of recommendation. However, they only consider the dynamic interests from users but ignoring the changed properties of items. In this paper, we present a deep model which can capture not only the common users behaviors, the changed users interests and fundamental item properties, but also the changed properties of items. Experimental results conducted on a variety of datasets demonstrate that our model significantly outperforms all baseline recommender systems.

Read the full paper here: https://link.springer.com/chapter/10.1007/978-3-030-00847-5_37