Authors: Alex Borgida, Daniel Amyot, Daniele Barone, Eric Yu, Jennifer Horkoff, John Mylopoulos, Lei Jiang
Tags: 2014, conceptual modeling
Business intelligence (BI) offers tremendous potential for business organizations to gain insights into their day-to-day operations, as well as longer term opportunities and threats. However, most of today’s BI tools are based on models that are too much data-oriented from the point of view of business decision makers. We propose an enterprise modeling approach to bridge the business-level understanding of the enterprise with its representations in databases and data warehouses. The business intelligence model (BIM) offers concepts familiar to business decision making–such as goals, strategies, processes, situations, influences, and indicators. Unlike many enterprise models which are meant to be used to derive, manage, or align with IT system implementations, BIM aims to help business users organize and make sense of the vast amounts of data about the enterprise and its external environment. In this paper, we present core BIM concepts, focusing especially on reasoning about situations, influences, and indicators. Such reasoning supports strategic analysis of business objectives in light of current enterprise data, allowing analysts to explore scenarios and find alternative strategies. We describe how goal reasoning techniques from conceptual modeling and requirements engineering have been applied to BIM. Techniques are also provided to support reasoning with indicators linked to business metrics, including cases where specifications of indicators are incomplete. Evaluation of the proposed modeling and reasoning framework includes an on-going prototype implementation, as well as case studies.Read the full paper here: http://www.sosym.org/